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⚫What is the data assimilation (DA)? 

“Data assimilation is commonly considered as a way of keeping a model ‘on the tracks’ 

by constantly correcting it with fresh observations”
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“Propose deep learning-based data assimilation 

using multi-source data”
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Deep learning-based data assimilation

⚫Overall study flow
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Data and method

Data Paramters
Temporal 

resolution

Spatial 

resolution
Study area Source

KIM Temperature, relative humidity 6 hrs 12 km

East Asia

KMA

GK2A AAP Temperature, relative humidity 1 hrs 6 km NMSC

Radio sonde Temperature, dew point depression 12 hrs Point NOAA ESRL

GNSS-RO Temperature, Relative humidity Irregular Point UCAR CDAAC
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⚫Data – GK2A L2 AAP temperature and humidity profile

[GK2A AAP Algorithm (GK2A ATBD)]

■ clear-sky

successful retrieval

■ clear-sky 

filled with first guess

■ cloudy

filled with first guess

[Geostationary satellite-based TQ retrieval

(Lee et al., 2017)]
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Deep learning-based data assimilation

⚫Data – Radiosonde observations

195 stations over the East Asia from 2021 to 2022

Observation obtained at 00, 12 UTC

50% reduction over the China since September in 

2021

[ECMWF Radiosonde 

technical report(2017)]

Large observation errors at the China and 

Russia stations (especially for RH)
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Results

⚫ Temperature profile (08/25/2022 – 08/31/2022)
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Results

⚫Relative humidity profile (08/25/2022 – 08/31/2022)
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RSME Level (hPa) ERA5 reanalysis KIM analysis KIM forecasts GK2A AAP DL-based DA

T

(K)

250 1.3255 1.3087 1.3428 1.4535 1.3591

500 1.3218 1.3336 1.3674 1.4078 1.3678

850 1.6553 1.6755 1.7218 1.7658 1.6970

RH

(%)

250 27.8443 30.2741 30.8899 29.1765 27.6481

500 23.4858 24.9741 25.4216 24.4263 23.9571

850 19.8925 21.1495 21.8662 21.0814 20.3274

Radiosonde stations

• Evaluation for last weeks in 2021-2022

• The radiosonde datasets from the China 

and Russia were excluded in evaluation due 

to the quality issues

• Number of observations for evaluations: 

250 hPa: 3642/168 days

500 hPa: 6785/168 days

850 hPa: 6828/168 days

Results

⚫Evaluation of T and RH profile (at 250, 500, and 850 hPa, all-sky)
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Results

⚫Evaluation of T and RH profile (at 250, 500, and 850 hPa, clear and cloudy)

RSME Level (hPa) ERA5 reanalysis KIM analysis KIM forecasts GK2A AAP DL-based DA

T

(K)

250 1.3102 1.2958 1.3302 1.4490 1.3583

500 1.2115 1.2251 1.2556 1.3029 1.2785

850 1.5517 1.5681 1.6167 1.6640 1.5927

RH

(%)

250 20.7766 23.8844 24.7872 20.4925 19.5199

500 20.1473 21.1310 21.5855 21.1695 20.5273

850 20.8810 22.2381 22.9755 21.9673 21.2930

❖ Clear

RSME Level (hPa) ERA5 reanalysis KIM analysis KIM forecasts GK2A AAP DL-based DA

T

(K)

250 1.3405 1.3213 1.3550 1.4579 1.3540

500 1.4220 1.4324 1.4692 1.5039 1.4503

850 1.7513 1.7748 1.8194 1.8606 1.7937

RH

(%)

250 33.4249 35.5061 35.9458 35.7804 33.8483

500 26.3723 28.2624 28.7127 27.2646 26.9166

850 18.8683 20.0195 20.7157 20.2031 19.3293

❖ Cloudy
UM forecasts
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Results

⚫Seasonal evaluation of T profiles (at 250, 500, and 850 hPa, clear)
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⚫Seasonal evaluation of T profiles (at 250, 500, and 850 hPa, clear, DJF)
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Results

⚫Seasonal evaluation of T profiles (at 250, 500, and 850 hPa, clear, MAM)
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Results

⚫Seasonal evaluation of T profiles (at 250, 500, and 850 hPa, clear, JJA)
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Results

⚫Seasonal evaluation of T profiles (at 250, 500, and 850 hPa, clear, SON)
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Results

⚫Seasonal evaluation of RH profiles (at 250, 500, and 850 hPa, clear)
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Results

⚫Seasonal evaluation of T profiles (at 250, 500, and 850 hPa, clear, DJF)
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Results

⚫Seasonal evaluation of RH profiles (at 250, 500, and 850 hPa, clear, MAM)
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Results

⚫Seasonal evaluation of RH profiles (at 250, 500, and 850 hPa, clear, JJA)
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⚫Seasonal evaluation of RH profiles (at 250, 500, and 850 hPa, clear, SON)
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Results

⚫Difference between observations and model-based results (temperature at 250 hPa, 

background image: GK2A cloud mask)
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Conclusion

⚫ Propose deep learning-based data assimilation approach using geostationary satellite observations 

and radiosonde observations

⚫ Test on atmospheric parameters of temperature and relative humidity at 850, 500, and 250 hPa

⚫ At clear sky, deep learning-based DA results achieved improvement compared to GK2A AAP 

algorithm, and comparable performance with KIM-based forecasts

➢ Improvement from GK2A AAP (GK2A RMSE – DL-based DA RMSE)

⚫ This research was supported by “The Technical Development on Weather Forecast Support and 

Convergence Service using Meteorological Satellites” of the NMSC/KMA (KMA2020-00121)

ᇫRSME Temperature (T, K) Relative humidity (RH, %)

250 hPa 0.0907 0.9726

500 hPa 0.0244 0.6422

850 hPa 0.0713 0.6743
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